SimPhoNy

SimPhoNy-Mayavi Documentation
Release 0.2.0

SimPhoNy FP7 Collaboration

January 13, 2016

Contents

10

11

Repository

Requirements
2.1 Paraview 3.14.

O

2.2 ParaviewOpenFoam 4.1.0 e
2.3 Optional reqUIreMEeNts v v v i e

Installation

Testing
Documentation
Usage

FAQ

Known Issues
Directory structure

User Manual
10.1 SimPhoNy .

API Reference
11.1 Plugin module
11.2 Core module

WD L D

11

13

15

17

19

21
21

SimPhoNy-Mayavi Documentation, Release 0.2.0

A plugin-library for the Simphony framework (http://www.simphony-project.eu/) to provide visualization support (us-
ing http://www.paraview.org/) of the CUDS highlevel components.

Contents 1

http://www.simphony-project.eu/
http://www.paraview.org/

SimPhoNy-Mayavi Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Repository

Simphony-paraview is hosted on github: https://github.com/simphony/simphony-paraview

https://github.com/simphony/simphony-paraview

SimPhoNy-Mayavi Documentation, Release 0.2.0

4 Chapter 1. Repository

CHAPTER 2

Requirements

e paraview >= 3.14.1
* simphony >=0.2.1

simphony-paraview is known to work with paraview 3.14.1 (official) and paraview 4.1.0 (paraviewopenfoam) on
Ubuntu 12.04 (precise). Installation instructions are provided below.

2.1 Paraview 3.14.1

‘sudo apt-get install paraview

2.2 ParaviewOpenFoam 4.1.0

sudo sh —-c "echo deb http://www.openfoam.org/download/ubuntu precise main > /etc/apt/sources.list.d/«
sudo apt—-get update
sudo apt-get install paraviewopenfoam4l0

2.3 Optional requirements

To support the documentation built you need the following packages:
e sphinx >=1.2.3
* sectiondoc https://github.com/enthought/sectiondoc
* mock

Alternative running pip install -r doc_requirements.txt should install the minimum necessary com-
ponents for the documentation built.

https://github.com/enthought/sectiondoc

SimPhoNy-Mayavi Documentation, Release 0.2.0

6 Chapter 2. Requirements

CHAPTER 3

Installation

The package requires python 2.7.x, installation is based on setuptools:

build and install
python setup.py install

or:

build for in-place development
python setup.py develop

SimPhoNy-Mayavi Documentation, Release 0.2.0

8 Chapter 3. Installation

CHAPTER 4

Testing

To run the full test-suite run:

python -m unittest discover

SimPhoNy-Mayavi Documentation, Release 0.2.0

10 Chapter 4. Testing

CHAPTER 5

Documentation

To build the documentation in the doc/build directory run:

python setup.py build_sphinx

Note:

* One can use the —help option with a setup.py command to see all available options.

¢ The documentation will be saved in the . /build directory.

11

SimPhoNy-Mayavi Documentation, Release 0.2.0

12 Chapter 5. Documentation

CHAPTER 6

Usage

After installation the user should be able to import the paraview visualization plugin module by:

from simphony.visualization import paraview_tools
paraview_tools.show (cuds)

13

SimPhoNy-Mayavi Documentation, Release 0.2.0

14 Chapter 6. Usage

CHAPTER 7

FAQ

» Paraview contains a separate python runtime called pvpython. which python should we use?

simphony-paraview is tested and developed using the system python on Ubuntu 12.04. In theory one could
install simphony and simphony-paraview on any other python 2.7.x runtime like pvpython, but you will need to
build all dependencies against the pvpython runtime environment.

¢ When using paraviewopenfoam and the system simphony-paraview does not work, whats wrong?

Openfoam paraview does not make the provided python packages available to the system python thus in order
to use the simphony-paraview plugin from the system python one needs to change the following environment
variables:

export PYTHONPATH=${PYTHONPATH}:/opt/paraviewopenfoam41l0/lib/paraview—-4.1/site-packlages/:/opt/pa
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/opt/paraviewopenfoamd4l0/lib/paraview—4.1

15

SimPhoNy-Mayavi Documentation, Release 0.2.0

16 Chapter 7. FAQ

CHAPTER 8

Known Issues

¢ Intermittent segfault when running the test-suite (#22)
* Pressing a while interacting with a view causes a segfault (#23)

* An Empty window appears when using the snapshot function (#24)

17

SimPhoNy-Mayavi Documentation, Release 0.2.0

18 Chapter 8. Known Issues

CHAPTER 9

Directory structure

* simphony-paraview — Main package code.

— core — Utilities and basic conversion tools.
» examples — Holds examples of visualizing simphony objects with simphony-paraview.
* doc — Documentation related files:

— source — Sphinx rst source files

— build — Documentation build directory, if documentation has been generated using the make script in the
doc directory.

19

SimPhoNy-Mayavi Documentation, Release 0.2.0

20 Chapter 9. Directory structure

cHAPTER 10

User Manual

10.1 SimPhoNy

Paraview tools are available in the simphony library through the visualisation plug-in named paraview_tools.

e.g:

’from simphony.visualisation import paraview_tools

10.1.1 Visualizing CUDS

The show () function is available to visualise any top level CUDS container. The function will open a window
containing a 3D view of the dataset. Interaction is supported using the mouse and keyboard:

keyboard

* j/ t: toggle between joystick (position sensitive) and trackball (motion sensitive) styles. In
joystick style, motion occurs continuously as long as a mouse button is pressed. In trackball
style, motion occurs when the mouse button is pressed and the mouse pointer moves.

¢ 3: toggle the render window into and out of stereo mode. By default, red-blue stereo pairs are
created.

* e: exit the application.
¢ f: fly to the picked point
* p: perform a pick operation.

e r: reset the camera view along the current view direction. Centers the actors and moves the
camera so that all actors are visible.

* s: modify the representation of all actors so that they are surfaces.
» w: modify the representation of all actors so that they are wireframe.
mouse

¢ Button 1: rotate the camera around its focal point (if camera mode) or rotate the actor around
its origin (if actor mode). The rotation is in the direction defined from the center of the ren-
derer’s viewport towards the mouse position. In joystick mode, the magnitude of the rotation is
determined by the distance the mouse is from the center of the render window.

* Button 2: pan the camera (if camera mode) or translate the actor (if actor mode). In joystick
mode, the direction of pan or translation is from the center of the viewport towards the mouse

21

SimPhoNy-Mayavi Documentation, Release 0.2.0

position. In trackball mode, the direction of motion is the direction the mouse moves. (Note:
with 2-button mice, pan is defined as <Shift>-Button 1.)

¢ Button 3: zoom the camera (if camera mode) or scale the actor (if actor mode). Zoom
in/increase scale if the mouse position is in the top half of the viewport; zoom out/decrease
scale if the mouse position is in the bottom half. In joystick mode, the amount of zoom is
controlled by the distance of the mouse pointer from the horizontal centerline of the window.

Mesh example

from numpy import array

from simphony.cuds import Mesh, Point, Cell, Edge, Face
from simphony.core.data_container import DataContainer
from simphony.core.cuba import CUBA

points = array ([
(o, o, oj, 1, o, o1, 10, 1, 01, [0, O, 11,
[2, o, o1, 13, o, o1, 3, 1, 01, [2, 1, O],
2, o, 11, (3, o0, 11, [3, 1, 1], [2, 1, 111,
TET)

cells = [

[OI lr 2, 31, # tetra
[4, 5, 6, 7, 8, 9, 10, 1111 # hex

faces = [[2, 7, 111]
edges [3, 811

I
[
~
S
~

mesh = Mesh ('example')

add points

uids = mesh.add_points(
Point (coordinates=point, data=DataContainer (TEMPERATURE=index))
for index, point in enumerate (points))

add edges

edge_uids = mesh.add_edges (
Edge (points=[uids[index] for index in element])
for index, element in enumerate (edges))

add faces

face_uids = mesh.add_faces(
Face (points=[uids[index] for index in element])
for index, element in enumerate (faces))

add cells

cell_uids = mesh.add_cells(
Cell (points=[uids[index] for index in element])
for index, element in enumerate (cells))

if _ name_ == '"_ _main_ ':

from simphony.visualisation import paraview_tools

Visualise the Mesh object
paraview_tools.show (mesh, select=(CUBA.TEMPERATURE, 'points'))

22 Chapter 10. User Manual

SimPhoNy-Mayavi Documentation, Release 0.2.0

M2 @ ParaView

10.1. SimPhoNy 23

SimPhoNy-Mayavi Documentation, Release 0.2.0

Lattice example

import numpy

from simphony.cuds.lattice import make_cubic_lattice
from simphony.core.cuba import CUBA

lattice = make_cubic_lattice('test', 0.1, (50, 10, 120))

def set_temperature (nodes) :
for node in nodes:
index = numpy.array(node.index) + 1.0
node.data [CUBA.TEMPERATURE] = numpy.prod(index)
yield node

lattice.update_nodes (set_temperature (lattice.iter_nodes()))
if _ name_ == '__ _main__ ':
from simphony.visualisation import paraview_tools

Visualise the Lattice object
paraview_tools.show(lattice, select=(CUBA.TEMPERATURE, 'nodes'))

Particles example

from numpy import array

from simphony.cuds import Particles, Particle, Bond
from simphony.core.data_container import DataContainer
from simphony.core.cuba import CUBA

points = array([([o, o, o1, (., o, o1, o, 1, o1, o, o, 111, 'f")
bonds = array([[0, 11, [0, 31, [1, 3, 211)
temperature = array([10., 20., 30., 40.7)

particles = Particles('test')
uids = particles.add_particles(
Particle (

coordinates=point,
data=DataContainer (TEMPERATURE=temperature[index]))
for index, point in enumerate (points))

particles.add_bonds (
Bond (particles=[uids[index] for index in indices])
for indices in bonds)

if name == '__main__ ':

from simphony.visualisation import paraview_tools

Visualise the Particles object
paraview_tools.show(particles, select=(CUBA.TEMPERATURE, 'particles'))

24 Chapter 10. User Manual

SimPhoNy-Mayavi Documentation, Release 0.2.0

ParaView

10.1. SimPhoNy 25

SimPhoNy-Mayavi Documentation, Release 0.2.0

MO ParaView

26 Chapter 10. User Manual

CHAPTER 11

API Reference

11.1 Plugin module

This module simphony_paraview.plugin provides a set of tools to visualize CUDS objects. The tools are also
available as a visualisation plug-in to the simphony library.

11.2 Core module

A module containing core tools and wrappers for paraview data containers used in simphony_paraview.

Classes
cuba_data_accumulator.CUBADataAccumulator
Functions
supported_cuba() Return a set of currently supported CUBA keys.

default_cuba_value(cuba) Return the default value of the CUBA key as a scalar or numpy array.
cuds2vtk.cuds2vtk

Mappings

constants.points2edge
constants.points2face
constants.points2cell
constants.dataset2writer
constants.cuba_value_types

11.2.1 Description

27

SimPhoNy-Mayavi Documentation, Release 0.2.0

simphony_paraview.core.cuba_utils.supported_cuba ()
Return a set of currently supported CUBA keys.

simphony_paraview.core.cuba_utils.default_cuba_value (cuba)
Return the default value of the CUBA key as a scalar or numpy array.

Int type values have —1 as default, while float type values have numpy . nan.

28

Chapter 11. API Reference

Index

D

default_cuba_value() (in module
phony_paraview.core.cuba_utils), 28

S

supported_cuba() (in module
phony_paraview.core.cuba_utils), 28

sim-

sim-

29

	Repository
	Requirements
	Paraview 3.14.1
	ParaviewOpenFoam 4.1.0
	Optional requirements

	Installation
	Testing
	Documentation
	Usage
	FAQ
	Known Issues
	Directory structure
	User Manual
	SimPhoNy

	API Reference
	Plugin module
	Core module

